
Accessibility and why you should give a DOM
© 2022 Kyle West

Abstract

Learn about accessibility in design and development. We will cover the history of accessibility in the tech

space and the implications this has on building software today. Accessibility is as much of a usability

problem as it is a technical feat. We will address best practices, common pitfalls, and resources around

building products that are usable for everyone.

Slides and Presentation Notes

Hello everyone, thank you for coming. My name is Kyle West, and today we will be discussing how to design and build accessible

applications. This subject is very dear to me, and I hope you have a chance today to see the tremendous amount of good you can do

as you build your products.

There is a lot that goes into this subject, and today we are going to cover a variety of topics. These are a few questions you may have

already. We will answer them, of course. But I actually hope by the end you leave with more questions than you came with. This is

such a rich topic. I have spent the last 3 years actively researching and I still have plenty of questions all the time.

You have probably seen the abbreviated version of Accessibility from time to time. Some people pronounce it alley like an alley-way. I

like to pronounce it ally, since we ought to be a support for people.

Now that that's out of the way, let's get going.

In order to answer the question, "what does it mean to be accessible?" we need to have a conversation about context. The evolution

of interfaces has had a drastic effect on how accessibility concerns are addressed.

Text Based

Graphical

Mobile

1977 was a monumental year for computing. By this time, IBM had established that computers were for the modern business folk, but

it wasn't until this year that computers really started to be advertized to the average person.

What made this technology accessible in the general sense, is that people could afford to own a machine while having a median

salary.

Although most of those machines from 1977 had games developed for them, the primary interface people were introduced to was text

only. The PET didn't even have any graphics capabilities (the character set was stored in ROM and could not be modified)!

Text in - and text out. Compared to today's standards, this sounds really primitive, but at that time it was a world of difference from

punch cards.

You could tell the computer in almost english to do something, and it would do it.

As the markets grew and more people adopted technology into their homes and work places, the need to support those of differing

abilities arose.

For the visually impaired, one option was VersaBraille (or EuroBraille) retailing around $3000. In 1986 IBM created the first screen

reader called, "Screen Reader". Both of these were easy to use because they could plug into a PC or mainframe just like any other

terminal could do.

I should also note that in 1982 SAM (Software Automatic Mouth) was created and sold for $200 (C64, Apple II, Atari 8-bit). This later

became MacInTalk, which would eventually influence the first version of VoiceOver for the Mac.

What made these really special in my mind, is that they were almost a 1:1 mapping of what the visual user had. Visually it was "text-in-

text-out". For VersaBraille, it was "key-in-braille-out" and for the Screen Reader it was "key-in-sound-out". What one person could

do, any other could too (with maybe a little patience).

This was enabling because those with differing visual abilities were made equal, with a little help from technology.

Although Douglas Engelbart demonstrated the first concept of a graphical user interface in 1968, GUIs were mostly an academic

endeavor until 1983 when Apple released the Lisa and then in the following year the (much more simple) Macintosh.

This graphical interface allowed a new dimension of interaction and expression that was not possible with simple text.

However, we lost that parity we had with text based interfaces. This meant that accessibility could not entirely be handled by

hardware.

It would have to be a software solution.

In these years we started to see a lot of legislative growth in this space, and along with it - companies began to become more

responsible with their products. Two of these I would like to call out is that in 1996 we saw the first web-focused screen reader! And in

1999 WC3 released the WCAG, which we will talk about more later.

There are many things I left out, including standards for media captioning, automated Kiosk support for things like ATMs, etc. The

main deal is that software started to close the gap that hardware could not solve. Companies and Governments started to take

responsibility for their applications.

SOURCES:

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2005-06/accessibility/firstwave.html

https://www.afb.org/aw/17/6/15322

2007: Apple releases iPhone. I don't have to tell you how big of a deal that was for the tech space, but I do want to point out

that touch devices were as big of a jump from GUIs as GUIs were from text based interfaces.

2009: Apple adds VoiceOver with the iPhone 3GS - the first touch screen native SR, and then later added gesture support for

the Mac too

2009: Google releases Android, and later that year TalkBack

2010: Oratio, a mobile SR for the BlackBerry Curve was released

2011: Some creators of Oratio split off and wrote MobileAccessibility suite for Android

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2005-06/accessibility/firstwave.html
https://www.afb.org/aw/17/6/15322

Google

TalkBack - the native screen reader

VoiceAccess - navigate and control your phone with voice commands

SwitchAccess - navigate using peripheral hardware

Uses AI heavily to make their products integral to every day life

Live Transcribe: live speech to text

Live Caption: live text to speech for content on screen (including phone calls)

Lookout: point your phone at an object and it will tell you what it is, or what text is on it

Facebook

One of the pioneers in using OCR to caption images

Apple

Since 2011 all apple products ship with VoiceOver (my favorite of the SRs, personally)

Magnifier (if your phone comes with Lidar) will read out objects recognized in the camera

Dedicated number for Apple VoiceOver support with experts trained on the a11y experience

Microsoft

Like everyone else, you can live caption your video calls with MS Teams

Immersive Reader is specifically designed to help people with different comprehension and capabilities read text on the page

STORY TIME

In 2016 there was Robles v. Domino’s Pizza, LLC. A man named Guillermo Robles sued Dominos for not being able to use the website

or mobile app with a screen reader. In 2019 Domino's petitioned the need for ADA compliance but was denied. It wasn't until June of

2022 that the case concluded - with a settlement.

It is important to note that the Department of Justice does not enforce standards (WCAG), but it does enforce the ADA which

prohibits discrimination on the basis of disability. Unless of course, if you are a government website, then you are required to comply

to WCAG explicitly under 508.

In 2020 there was Sierra vs General Motors Company. Apparently you can't purchase a car when using a screen reader this is still on

going.

So there you have it: an abridged history of accessible technology. I debated on adding this part because it takes up time I could

spend on something else. But in the end I kept it because this knowledge demonstrates one key precept:

Accessibility is less to do with fulfilling standards, and more to do with solving actual user experience problems.

Theses interfaces all had/have standards that guide their development.

1. Text based machines had hardware protocols

2. GUI's have content and semantic standards

3. Mobile devices have both

What makes any of these accessible isn't the standards. It's sum of the whole system's capabilities which enable (or disable) the user

to fulfill their own goals.

Before we get into this section, I'd like to pause for a moment and tell you a story of an encounter I had.

Almost every day I take the bus to work. As such, I get to meet a variety of people. One day I had a perspective changing conversation

with a man (whom I will call, Dillon). Dillon has a condition medically described as Trisomy 21 or Down Syndrome. He and I were

talking about some of his recent experiences at work and with family, then seemingly out of no where he said something unexpected:

I hate it when people call me "Down Syndrome". I hate it when people say I'm "disabled". I'm not, I'm just different... But people tell

me I can't do things all the time, and I hate it. I'm not disabled.

I would have never guessed that he did not consider himself to have a disability. In his mind, he was only "different". In fact, something

he said later in the conversation indicated that he did not view Down Syndrome as any more different than hair or eye color.

I mention this story because we have a lot of labels to describe peoples' physical or mental conditions. Though that can be helpful in

the medical world when discussing health and treatment, what Dillon taught me is that referring to people by their disability is unkind

in the general sense.

So out of respect of this concept, for the rest of this presentation I am going to talk with more empathetic language. Instead of

mentioning "types of disabilities", we will talk about people's actual experiences and the variety that is found in life.

What can be done to improve this experience?

Glasses! - This tool is often so successful users don't think of it as assistive technology

Good Contrast (there are tools to help with this)

Support Screen Magnifiers

Contrast is one of the easiest things to validate on a website. There are countless tools that can help with the design and testing of

this. Contrast itself needs to be both high enough that people can distinguish elements on your site, and colors should be pleasing

enough not to cause discomfort to others. Those that benefit from "uncomfortable" levels of contrast will likely have software running

that changes the colors presented. To be most compatible with that, please ensure that color is not used as the only way of labeling

or providing meaning in your content.

Screen Magnifiers are quite popular. You should make sure that graphics and text do not become pixilated when enlarged. Designing

you page to be "responsive" will solve most of these problems for you.

For many experiences, people may turn to using a screen reader to augment their experience on the web. It's not reserved for people

with total sight loss, but rather those that may prefer to have addition information given to them as they navigate a site. We will go into

great detail on this later for how to make your website compatible with a screen reader.

I spent a lot more time on Visual Experiences than I will other spaces because frontend development has the most control there.

There are other experiences that we need to consider that are non-visual. Personally, I find a lot of the details fascinating, but we will

mostly focus on the implications that those details have on your application design.

There are (literally) many moving parts that effect our auditory experiences. Depending on your personal configuration of the outer,

middle, and inner ear some sounds may be more easy to perceive than others.

Some people experience actual pain with certain frequencies. Others' ears may physically transduce (or "receive") the sound waves,

but they may have a hard time perceiving the sounds.

In all these cases, there are a few things you should be doing:

All audio should accompanied by either a transcription or captions

Avoid loud and/or sudden sounds

If audible indication is needed for your app, include other forms of feedback like visual indicator or haptic feedback where

supported by the device

=================

I should also mention that there is one really important exception to my "talk about experiences instead of disabilities" rule of thumb.

That is: the Deaf (with a capital "D"). They have such a rich community that includes depth of language, culture, jokes, and values

that it would be rude to them to "beat around the bush" about their ability. The Deaf LOVE who they are and are quite proud to

celebrate it. So call them what they want to be called.

_footer: Screen Capture: Debbielynne Kespert, The Outspoken TULIP, https://headstickdeb.com/2020/09/14/im-not-letting-go-

without-a-fight/

1. Ensure all functions are available to both mouse/touchpad and keyboard users

2. Ensure flows are error-tolerant (e.g., ask "are you sure you want to delete this file?"). Create sufficiently large links and

buttons that remain in a static position. Allow users to remap or disable single key shortcuts.

3. Voice-activated software can replicate mouse movement, but not as efficiently as keyboard functionality. Ensure all functions

are available from the keyboard. Provide descriptive link and button text.

4. Provide a method for skipping over long lists of links or other lengthy content.

5. Ensure content works in both horizontal or vertical orientation. Do not rely on motion actuation (such as shaking or panning

the device) or pointer gestures (such as swiping or dragging).

SOURCE: https://webaim.org/articles/motor/motordisabilities "Key Concepts"

_footer: Source: WebAIM Survey of Users with Motor Disabilities, March 2013, https://webaim.org/projects/motordisabilitysurvey/

https://headstickdeb.com/2020/09/14/im-not-letting-go-without-a-fight/
https://webaim.org/articles/motor/motordisabilities
https://webaim.org/projects/motordisabilitysurvey/

_footer: Source: https://webaim.org/articles/cognitive/ | https://webaim.org/articles/seizure/ There are a variety of other experiences

your users may face. Some of them (like Photosensitivity) can be very serious while others are more mild.

For the ones I labeled as physical challenges, there are standards and associated tooling that can help ensure you do not cause harm

to individuals (like seizures or nausea).

Cognitive challenges are more difficult to account for since the solution to your user's problems will depend heavily on the domain of

your applications. So "it depends" on what your overall goal for the user experience is. There are a lot of great resources, however,

that we will cover in a later portion that can help you design with these considerations in mind.

The most important of assistive technologies is the screen reader. Although it was designed for primarily those who experience

difficulty seeing, there are plenty of others who use the screen reader because it offers greater control of their device with a

keyboard.

Because of this, the majority of the web standards, patterns, and best practices are focused around the screen reader experience.

Let's talk a bit about how users interact with the web, from the view of those who prefer a screen reader.

https://webaim.org/articles/cognitive/
https://webaim.org/articles/seizure/

_footer: Source: WebAIM Screen Reader User Survey, #9 Results, Jun 2021, https://webaim.org/projects/screenreadersurvey9/

_footer: Source: WebAIM Screen Reader User Survey, #9 Results, Jun 2021, https://webaim.org/projects/screenreadersurvey9/

_footer: Source: WebAIM Screen Reader User Survey, #9 Results, Jun 2021, https://webaim.org/projects/screenreadersurvey9/

https://webaim.org/projects/screenreadersurvey9/
https://webaim.org/projects/screenreadersurvey9/
https://webaim.org/projects/screenreadersurvey9/

_footer: Source: WebAIM Screen Reader User Survey, #9 Results, Jun 2021, https://webaim.org/projects/screenreadersurvey9/

Pick a screen reader, and become proficient with it. If you simply learn how to use the screen reader that is most popular for the

device you develop on (or for) then you will cover 80% of the usages of the other device/browser/screen-reader combinations.

Audit what you are building. Understand the flow (or struggle) your users might take when trying to find something or perform

common actions. Regularly audit your product's critical work flows to ensure they can be performed with keyboard and screen reader

navigation.

There are some pretty major differences between each screen reader, but each screen reader is built to be compatible with the ARIA

standards. Know and implement those.

===============

Now I put these suggestions up for which screen reader would be the best start for you to use, but that suggestion is purely based off

of statistics. Just pick the one that is most accessible to you. If you develop on a Mac, use VoiceOver. If you don't have the funds for

JAWS, use NVDA. Like I said, if you cover one screen reader and follow current standards, most of the other use cases are covered.

https://webaim.org/projects/screenreadersurvey9/

Web Content Accessibility Guidelines (WCAG) is a "Standard" that is content based, not technology specific. It tells you what should

be on the page and how it should be structured, and what things to avoid. Effectively, it is a design centered focus. WCAG also

replaces the original Section 508 compliance requirements from 1998's addition to the ADA.

Accessible Rich Internet Applications (ARIA) is another "Standard", but focused on establishing an interface with assistive

technologies. This standard is an imperative resource on how exactly to create accessible affordances. We will take a look later at this

in more detail.

Web Accessibility in Mind (WebAIM) is a great general resource. It is developed by the Institute for Disability Research, Policy, and

Practice at Utah State University. It is considered one of the most effective tools for training on accessible design. WebAIM digests

the formal concepts of the WCAG and ARIA specifications into plain language. In doing this, they offer explanations as to the why

behind the standards. They also developed a tool called WAVE which is an effective tool at evaluating how well your applications

match the WCAG and ARIA standards. All of my stats in this presentation come from their research efforts.

_footer: Frame Content: WebAIM Contrast Checker, https://webaim.org/resources/contrastchecker/ WebAIM also make a really useful

contrast checker. Why I love it, is it has the explanation inline to why the contrast matters, and the subtle contexts that change the

requirements for contrast.

Contrast issues are far too common. You don't even have to have a physical condition to have a disability. If you use a cheap and/or

sun-bleached monitor, then you too will have a hard time with low contrast on some sites. Developers and designers are so spoiled

with high quality tech that color contrast can be easily overlooked. Just use a contrast checker. It will make your product more usable

for more people.

https://webaim.org/resources/contrastchecker/

As you may already know, the code you write is interpreted by the browser to compose a Document Object Model, or DOM for short.

HTML, CSS, and JavaScript all impact the DOM Tree to describe how you want your application to look and behave.

In order to make something useful of the DOM, the browser interprets it a few different ways.

The most common interface for the DOM is the GUI, which is painted onto the user's screen. You are quite familiar with how this

works.

The second interface is also quite familiar to you, it's the DevTools. Funny thing, even I find myself sometimes asking someone to

"inspect the DOM". This is not technically correct. You aren't inspecting the DOM, you are using DevTools inspect the elements as

rendered in the GUI.

The last interface is only familiar to developers who work with accessibility, that is: the Accessibility Tree. This tree is a simplified

version of the DOM where:

related text nodes are merged into a single semantic structure

presentation-only elements are removed entirely

Headings, form elements, links, and page landmarks are recorded and organized for easy traversal

implied semantics are interpreted (more on this later)

This Accessibility Tree is accessed via a native API by Screen Readers, Refreshable Braille Displays, and other assistive tech. This API

is then wrapped into a variety of user commands that allow your end user to use your site according to their own needs and

preferences.

Y'all ready to talk about code now?

Let's start off by talking about something every web developer knows and loves. The humble div . What is a div? Well, it stands for

"division", but it used in so many context we can also say it means "anything". And we love it.

With a little CSS you can make a dialog, a menu, or anything you want with a div. Let's talk about that.

Since the Accessibility Tree is constructed from the DOM and not directly from our source code, we have to be careful how we

structure our code. Specificity this means picking the right tagnames and attributes, as well as establishing a meaningful structure for

our code.

Static HTML is inherently accessible because, when used properly, it has meaning. Take this button code for example. The syntax (or

structural arrangement) of our code comes from the HTML grammatical definition (shown above). What makes our code useful is not

the language itself, but the semantics (or meaning) behind the words we use from the language.

Notice that I don't have to show you a screenshot of the rendered button. You already have a pretty accurate picture in your mind of

how this is rendered, don't you? Likewise it sits with the Accessibility Tree. If you use the right vocabulary to provide the intended

meaning, then assistive technology will know how to present what you intend for the user experience.

Here is a section of code not too dissimilar to what you can find on a popular shopping website (that I won't name)

Thanks to the good class names, you can kinda figure out that this is a set of search filters probably off to one side of the main page

content.

Let's play a game. What if I tried not to use any div s? Could we still make this?

Of course we can! Now there are a few ways to go about it, but I chose this one because it is rich with semantic meaning.

In the end, we could have kept the class names if we wanted, or changed our selectors - that's not what I am wanting to talk about.

Notice here the value that comes out naturally when just reading through this code.

The inputs and label text are not only grouped visually, but explicitly through the id/for pattern

The legend "price" labels all the checkbox options in the fieldset with relevance

The form element ties all the controls together

and lastly, we know this piece of code is secondary to the main content because it is under an aside element

Even though these two implementations have the same visual result, this structure has an inherit sense of meaning that the other is

missing. All of that because we challenged ourselves not to use any div s.

Notice as I navigate here with the screen reader, that none of the options tell me what the value is I am selecting!

Notice as I navigate here with the screen reader, that none of the options tell me what the value is I am selecting! Notice here that it

announces that I navigated to a "complementary" (or side content) part of the page. Additionally, the labels are working nicely. And

when I go back, it re-announces that I have entered the "Price" selection.

This is a much more prime experience, and it didn't cost anything more than simply being thoughtful with what element I chose.

In fact, the sighted user experience is better too with regards to the label. If we click the naive labels, nothing happens! But if I click

the semantic labels, they select the corresponding radios.

When you choose to opt out of using a native element, there is a lot you have to juggle. Notice that he had to add a role and tabindex

to his code. This works for the trivial case, but say the button needs to be disabled, well div does not support the disabled

attribute. He will have to remember to use aria-disabled instead.

It works, but why? What could he hope to gain?

_footer: Source: Read Me First, ARIA APG, https://www.w3.org/WAI/ARIA/apg/practices/read-me-first/ Now that we have covered a

couple examples, I'd like to start taking a closer look at ARIA. Before I do that though, could I please get a volunteer to read this

quote?

Thank you.

Let's talk about ARIA roles

_footer: Source: Read Me First, ARIA APG, https://www.w3.org/WAI/ARIA/apg/practices/read-me-first/ When you set a role on an

element, you are promising to the A11y Tree that you also are providing all the JavaScript that handles the keyboard interactions

expected for that role. Unlike some native HTML elements, ARIA roles do not cause browsers to suddenly provide keyboard behaviors,

nor does the Screen Reader add the expected behavior for you (most of the time).

https://www.w3.org/WAI/ARIA/apg/practices/read-me-first/
https://www.w3.org/WAI/ARIA/apg/practices/read-me-first/

Roles also override the native ARIA features. For example, You can tell a link to be a menuitem and that is exactly what it will be

treated as.

I remember the day I learned that CSS effected semantics. I thought I was being clever by structuring a collection of items using

table/tr/td, but then I applied "display: flex" to it so that it had a nice visual layout. This backfired. When I tried it out with VoiceOver, it

did not register as a table. The very thing I was try to solve by "not using a div", was caused by a single CSS rule.

Whatever role you specify will get applied

Then CSS implications

Then HTML tag semantics

In order to demonstrate this, here is a codepen I made we can play with

Here is a wire frame of a simple website. Notice that you can choose to use the role or the semantic HTML element.

Your main top level navigation should go inside the header or footer. Your "content" of the site should be inside a main, and additional

secondary content should sit inside an aside element.

These semantics provide convenience for your users to jump around the page using a screen reader.

If you use landmarks, proper headings, links, and form elements on your page, your users will have a much easier time navigating your

product. This is because the screen reader organizes these menus to help the user "skim" the site and more easily search for what

they are looking for.

In fact, if you only did one thing to your code, I would ask you to make sure your heading levels are correctly ordered on the page. If

you have good headings, your users will be able to navigate effectively to find whatever it is they are looking for.

_footer: Source: Providing Accessible Names and Descriptions, ARIA APG, https://www.w3.org/WAI/ARIA/apg/practices/names-and-

descriptions/ There are several rules when it comes to naming and describing content

1. Heed Warnings and Test Thoroughly (WAVE, linters, and other tools can help)

2. Prefer Visible Text (for parity between experiences)

3. Prefer Native Techniques (label-input, fieldset-legend, table-caption)

4. Avoid Browser Fallback (prefer other methods where possible)

5. Compose Brief, Useful Names (avoid noise)

Doing this (especially the aria-label or alt attribute on an icon or image, and the label for form elements) can make a world of

difference for your users. I have seen so many unlabeled IconButtons and images. It frustrates me a lot because those are so easy to

fix, but cause so much confusion if not done.

https://www.w3.org/WAI/ARIA/apg/practices/names-and-descriptions/

Sometimes, it is possible for images or other not interactive elements to provide no value to the end user if they are non-visual. If

captions or descriptions are not possible or effective, feel free to mark that DOM node as presentational with the role or the aria

attributes.

However, be careful not to mark any interactive content as hidden, because if you do the screen reader will never be able to navigate

to that element. It is removed from the Accessibility Tree altogether when that is done.

In case it is unclear, someone has gone to the trouble to write effectively two applications, the "normal" application, and then what

turned out to be a semantically correct but rather watered down version of their product.

History has taught us that "separate" is NOT equal. Even if the intent behind his was to provide a better experience to blind users, it's

not the correct way to go about it. What's wrong with this, is that it is actual discrimination. Ethically speaking, you are better off to fix

your application so that it is using best practices. Your visual users will benefit from it too.

There is a lot I have not covered today. I left out:

Keyboard interactions

Grid and Table semantics

All the types of roles

TONS aria attributes (like form validation, loading content, menus, and dialogs, to name a few)

The reason why, is there is no way I could cover everything in a single presentation. Some people spend years actively studying this

subject. Today I covered the very basic principles.

Before I end though, I want to quickly walk you through guides so that you know where to turn to have your questions answered.

_footer: Frame Content: APG, https://www.w3.org/WAI/ARIA/apg/patterns/ If you know what you need to build, but don't know how to

make it accessible, this is the site to turn to. They do a deep dive into semantics, setting up keyboard interfaces, and other details for

a large number of widgets.

Let's take a look at Combobox for example

_footer: Frame Content: WebAIM, https://webaim.org WebAIM is an excellent resource for everyone. Where the WCAG and APG cover

a lot of the whats and hows of accessibility, WebAIM cover's the whys.

Show:

articles

projects

Surveys

WAVE

https://www.w3.org/WAI/ARIA/apg/patterns/
https://webaim.org/

_footer: Frame Content: WCAG, https://www.w3.org/WAI/standards-guidelines/wcag/ They themselves say:

WCAG is not an introduction to accessibility.

Actually, you could probably never read this yourself and be fine. It's the legal requirements for what defines something as accessible.

WebAIM is a much more useful reference for designing accessible applications. But here you go.

FamilySearch has made a tremendous effort in the last couple years to adopt the standards and practices mentioned. We still aren't

perfect, but we have greatly improved the user experience across the board. Our users have given us very positive feedback.

Three major key points have contributed into our recent successes:

WebDev, QA, and UX coordination and involvement

Regular auditing and training

The adoption of a unified Design System and Component Library

But success doesn't have to start as a large organizational effort. Grass roots efforts can go a long way. We had a lot of successes

before any formal committee was formed. In fact, we formed the committee to coordinate the efforts already happening by individuals

in the org.

https://www.w3.org/WAI/standards-guidelines/wcag/

Lastly, if you remember only one things from this presentation, it's that Accessibility is less about standards and compliances than it is

about building truly usable products.

Life is so hard for so many people in the world. Please consider the capacity you have to reduce their burdens - at least in your

interactions with them, or their interactions with your products.

Do good. Thank you. ? Pathos:

watch https://www.youtube.com/watch?v=Oc_QMQ4QHcw

https://www.youtube.com/watch?v=Oc_QMQ4QHcw

